Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Stem Cells Dev ; 33(7-8): 153-167, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366751

RESUMO

Mouse postnatal neural stem cells (pNSCs) can be expanded in vitro in the presence of epidermal growth factor and fibroblast growth factor 2 and upon removal of these factors cease proliferation and generate neurons, astrocytes, and oligodendrocytes. The genetic requirements for self-renewal and lineage-commitment of pNSCs are incompletely understood. In this study, we show that the transcription factors NFIA and NFIB, previously shown individually, to be essential for the normal commitment of pNSCs to the astrocytic lineage in vivo, are jointly required for normal self-renewal of pNSCs in vitro and in vivo. Using conditional knockout alleles of Nfia and Nfib, we show that the simultaneous loss of these two genes under self-renewal conditions in vitro reduces the expression of the proliferation markers PCNA and Ki67, eliminates clonogenicity of the cells, reduces the number of cells in S phase, and induces aberrant differentiation primarily into the neuroblast lineage. This phenotype requires the loss of both genes and is not seen upon loss of Nfia or Nfib alone, nor with combined loss of Nfia and Nfix or Nfib and Nfix. These data demonstrate a unique combined requirement for both Nfia and Nfib for pNSC self-renewal.


Assuntos
Fatores de Transcrição NFI , Células-Tronco Neurais , Animais , Camundongos , Diferenciação Celular/fisiologia , Autorrenovação Celular , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo
2.
J Med Case Rep ; 18(1): 90, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38347602

RESUMO

BACKGROUND: Chiari malformation is one of the most common Central nervous system (CNS) abnormalities that can be detected in routine fetal scanning. Chiari malformation type I (CMI) is a congenital defect characterized by a displacement of the cerebellar tonsils through the foramen magnum. The etiology of CMI has not been well established and suggested having multifactorial contributions, especially genetic deletion. Clinical characteristics of this anomaly may express in different symptoms from neurological dysfunction and/or skeletal abnormalities in the later age, but it is rarely reported in pregnancy. CASE PRESENTATION: We present a case in which the Chiari malformation type I was diagnosed with comorbidities of facial anomalies (flatting forehead and micrognathia) and muscular-skeletal dysmorphologies (clenched hands and clubfeet) at the 24+6 weeks of gestation in a 29-year-old Vietnamese pregnant woman. The couple refused an amniocentesis, and the pregnancy was followed up every 4 weeks until a spontaneous delivery occurred at 38 weeks. The newborn had a severe asphyxia and seizures at birth required to have an emergency resuscitation at delivery. He is currently being treated in the intensive neonatal care unit. He carries the novel heterozygous NFIA gene mutation confirmed after birth. No further postnatal malformation detected. CONCLUSION: CMI may only represent with facial abnormalities and muscle-skeletal malformations at the early stage of pregnancy, which may also alert an adverse outcome. A novel heterozygous NFIA gene mutation identified after birth helps to confirm prenatal diagnosis of CMI and to provide an appropriate consultation.


Assuntos
Malformação de Arnold-Chiari , Masculino , Gravidez , Feminino , Recém-Nascido , Humanos , Adulto , Malformação de Arnold-Chiari/diagnóstico , Malformação de Arnold-Chiari/genética , Fatores de Transcrição NFI/genética , Diagnóstico Pré-Natal , Amniocentese , Mutação , Imageamento por Ressonância Magnética
3.
Am J Med Genet A ; 194(5): e63516, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38168088

RESUMO

The NFIX gene encodes a DNA-binding protein belonging to the nuclear factor one (NFI) family of transcription factors. Pathogenic variants of NFIX are associated with two autosomal dominant Mendelian disorders, Malan syndrome (MIM 614753) and Marshall-Smith syndrome (MIM 602535), which are clinically distinct due to different disease-causing mechanisms. NFIX variants associated with Malan syndrome are missense variants mostly located in exon 2 encoding the N-terminal DNA binding and dimerization domain or are protein-truncating variants that trigger nonsense-mediated mRNA decay (NMD) resulting in NFIX haploinsufficiency. NFIX variants associated with Marshall-Smith syndrome are protein-truncating and are clustered between exons 6 and 10, including a recurrent Alu-mediated deletion of exons 6 and 7, which can escape NMD. The more severe phenotype of Marshall-Smith syndrome is likely due to a dominant-negative effect of these protein-truncating variants that escape NMD. Here, we report a child with clinical features of Malan syndrome who has a de novo NFIX intragenic duplication. Using genome sequencing, exon-level microarray analysis, and RNA sequencing, we show that this duplication encompasses exons 6 and 7 and leads to NFIX haploinsufficiency. To our knowledge, this is the first reported case of Malan Syndrome caused by an intragenic NFIX duplication.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Deficiência Intelectual , Megalencefalia , Displasia Septo-Óptica , Síndrome de Sotos , Criança , Humanos , Fatores de Transcrição NFI/genética , Síndrome de Sotos/genética , Éxons/genética , Megalencefalia/genética , Deficiência Intelectual/genética , Análise de Sequência de RNA
4.
Acta Neuropathol Commun ; 12(1): 12, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38243303

RESUMO

Erythroblastic sarcoma (ES) (previously called chloroma or granulocytic sarcoma) are rare hematological neoplams characterized by the proliferation of myeloid blasts at extramedullary sites, and primarily involve the skin and soft tissue of middle-aged adults. ES may be concomitant with or secondary to myeloid neoplasms (mostly acute myeloid leukemia (AML)) or in isolated cases (de novo) without infiltration of the bone marrow by blasts. ES share cytogenetic and molecular abnormalities with AML, including RUNX1T1 fusions. Some of these alterations seem to be correlated with particular sites of involvement. Herein, we report an isolated erythroblastic sarcoma with NFIA::RUNX1T1 located in the central nervous system (CNS) of a 3-year-old boy. Recently, two pediatric cases of CNS MS with complete molecular characterization have been documented. Like the current case, they concerned infants (2 and 3 years-old) presenting a brain tumor (pineal involvement) with leptomeningeal dissemination. Both cases also harbored a NFIA::RUNX1T3 fusion. ES constitutes a diagnostic challenge for neuropathologists because it does not express differentiation markers such as CD45, and may express CD99 which could be confused with CNS Ewing sarcoma. CD43 is the earliest pan-hematopoietic marker and CD45 is not expressed by erythroid lineage cells. E-cadherin (also a marker of erythroid precursors) and CD117 (expressed on the surface of erythroid lineage cells) constitute other immunhistochemical hallmarks of ES. The prognosis of patients with ES is similar to that of other patients with AML but de novo forms seem to have a poorer prognosis, like the current case. To conclude, pediatric ES with NFIA::RUNX1T1/3 fusions seem to have a tropism for the CNS and thus constitute a potential pitfall for neuropathologists. Due to the absence of circulating blasts and a DNA-methylation signature, the diagnosis must currently be made by highlighting the translocation and expression of erythroid markers.


Assuntos
Neoplasias do Sistema Nervoso Central , Leucemia Mieloide Aguda , Sarcoma Mieloide , Sarcoma , Pré-Escolar , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Medula Óssea/patologia , Neoplasias do Sistema Nervoso Central/patologia , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Sarcoma/metabolismo , Sarcoma/patologia , Sarcoma Mieloide/genética , Sarcoma Mieloide/diagnóstico , Sarcoma Mieloide/metabolismo
5.
Zhonghua Bing Li Xue Za Zhi ; 53(2): 149-154, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38281782

RESUMO

Objective: To explore the correlation between MYB/NFIB gene fusion and clinicopathological features such as tumor grade and prognosis of head and neck adenoid cystic carcinoma (ACC), and to assess the concordant rate of fluorescent in situ hybridization (FISH) with MYB and NFIB immunohistochemistry. Methods: FISH detection of MYB/NFIB gene fusion was performed on 48 head and neck ACC cases and 15 non-ACC salivary gland tumors at National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China during April 2014 and January 2020. ACC cases were divided into grade Ⅰ-Ⅱ, grade Ⅲ and high-grade transformation, according to pathological grading criteria. Prognosis, FISH results and other clinicopathological characteristics were analyzed. MYB and NFIB immunohistochemistry was performed on the 48 ACC and 15 non-ACC cases. The diagnostic accuracy of FISH and immunohistochemistry was compared. Results: FISH detected MYB/NFIB gene fusion in 41.7% (20/48) of the ACC. Its positive rate was inversely correlated with higher pathological grades (P=0.036). The higher histological grade was linked to worse progression-free survival (P=0.024), whereas there was no correlation between the status of gene fusion detected by FISH and progression-free survival (P=0.536). FISH didnot detect MYB/NFIB gene fusion in 15 non-ACC salivary gland tumors The specificity of diagnosing ACC is 100% for both FISH detection of gene fusion and immunohistochemical detection of MYB expression. However, the sensitivity for both methods was only about 41.7%, respectively. By combining FISH and MYB immunohistochemistry, the sensitivity for diagnosing ACC was increased to 66.7%. Conclusions: MYB/NFIB gene fusion has a lower detection rate in grade Ⅲ ACC and high-grade transformation ACC. Meanwhile gene fusion status is not correlated with prognosis. The sensitivity for diagnosing ACC can be improved by combining FISH and MYB immunohistochemistry.


Assuntos
Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Humanos , Carcinoma Adenoide Cístico/diagnóstico , Carcinoma Adenoide Cístico/genética , Hibridização in Situ Fluorescente , Proteínas de Fusão Oncogênica/genética , Neoplasias das Glândulas Salivares/diagnóstico , Neoplasias das Glândulas Salivares/genética , Fusão Gênica , Prognóstico , Fatores de Transcrição NFI/genética
6.
Cancer Res ; 84(2): 226-240, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-37963187

RESUMO

Metastasis is a major cause of morbidity and mortality in patients with cancer, highlighting the need to identify improved treatment and prevention strategies. Previous observations in preclinical models and tumors from patients with small cell lung cancer (SCLC), a fatal form of lung cancer with high metastatic potential, identified the transcription factor NFIB as a driver of tumor growth and metastasis. However, investigation into the requirement for NFIB activity for tumor growth and metastasis in relevant in vivo models is needed to establish NFIB as a therapeutic target. Here, using conditional gene knockout strategies in genetically engineered mouse models of SCLC, we found that upregulation of NFIB contributes to tumor progression, but NFIB is not required for metastasis. Molecular studies in NFIB wild-type and knockout tumors identified the pioneer transcription factors FOXA1/2 as candidate drivers of metastatic progression. Thus, while NFIB upregulation is a frequent event in SCLC during tumor progression, SCLC tumors can employ NFIB-independent mechanisms for metastasis, further highlighting the plasticity of these tumors. SIGNIFICANCE: Small cell lung cancer cells overcome deficiency of the prometastatic oncogene NFIB to gain metastatic potential through various molecular mechanisms, which may represent targets to block progression of this fatal cancer type.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição NFI , Carcinoma de Pequenas Células do Pulmão , Animais , Humanos , Camundongos , Neoplasias Pulmonares/patologia , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Oncogenes , Carcinoma de Pequenas Células do Pulmão/patologia
7.
J Neuroinflammation ; 20(1): 247, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880726

RESUMO

BACKGROUND: The astrocytes in the central nervous system (CNS) exhibit morphological and functional diversity in brain region-specific pattern. Functional alterations of reactive astrocytes are commonly present in human temporal lobe epilepsy (TLE) cases, meanwhile the neuroinflammation mediated by reactive astrocytes may advance the development of hippocampal epilepsy in animal models. Nuclear factor I-A (NFIA) may regulate astrocyte diversity in the adult brain. However, whether NFIA endows the astrocytes with regional specificity to be involved in epileptogenesis remains elusive. METHODS: Here, we utilize an interference RNA targeting NFIA to explore the characteristics of NFIA expression and its role in astrocyte reactivity in a 4-aminopyridine (4-AP)-induced seizure model in vivo and in vitro. Combined with the employment of a HA-tagged plasmid overexpressing NFIA, we further investigate the precise mechanisms how NIFA facilitates epileptogenesis. RESULTS: 4-AP-induced NFIA upregulation in hippocampal region is astrocyte-specific, and primarily promotes detrimental actions of reactive astrocyte. In line with this phenomenon, both NFIA and vanilloid transient receptor potential 4 (TRPV4) are upregulated in hippocampal astrocytes in human samples from the TLE surgical patients and mouse samples with intraperitoneal 4-AP. NFIA directly regulates mouse astrocytic TRPV4 expression while the quantity and the functional activity of TRPV4 are required for 4-AP-induced astrocyte reactivity and release of proinflammatory cytokines in the charge of NFIA upregulation. NFIA deficiency efficiently inhibits 4-AP-induced TRPV4 upregulation, weakens astrocytic calcium activity and specific astrocyte reactivity, thereby mitigating aberrant neuronal discharges and neuronal damage, and suppressing epileptic seizure. CONCLUSIONS: Our results uncover the critical role of NFIA in astrocyte reactivity and illustrate how epileptogenic brain injury initiates cell-specific signaling pathway to dictate the astrocyte responses.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Fatores de Transcrição NFI , Canais de Cátion TRPV , Animais , Humanos , Camundongos , 4-Aminopiridina/efeitos adversos , Astrócitos/metabolismo , Encéfalo/metabolismo , Sistema Nervoso Central/metabolismo , Epilepsia/metabolismo , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/metabolismo , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Canais de Cátion TRPV/metabolismo , Regulação para Cima
8.
Commun Biol ; 6(1): 775, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491379

RESUMO

Nuclear factor I B (NFIB) plays an important role in tumors. Our previous study found that NFIB can promote colorectal cancer (CRC) cell proliferation in acidic environments. However, its biological functions and the underlying mechanism in CRC are incompletely understood. Nicotinamide adenine dinucleotide (NAD+) effectively affects cancer cell proliferation. Nevertheless, the regulatory mechanism of NAD+ synthesis in cancer remains to be elucidated. Here we show NFIB promotes CRC proliferation in vitro and growth in vivo, and down-regulation of NFIB can reduce the level of NAD+. In addition, supplementation of NAD+ precursor NMN can recapture cell proliferation in CRC cells with NFIB knockdown. Mechanistically, we identified that NFIB promotes CRC cell proliferation by inhibiting miRNA-182-5p targeting and binding to NAMPT, the NAD+ salvage synthetic rate-limiting enzyme. Our results delineate a combination of high expression of NFIB and NAMPT predicted a clinical poorest prognosis. This work provides potential therapeutic targets for CRC treatment.


Assuntos
Neoplasias Colorretais , MicroRNAs , Humanos , Fatores de Transcrição NFI/genética , Regulação para Baixo , NAD/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo
9.
Gene ; 881: 147620, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37433356

RESUMO

Nuclear factor 1 X-type (Nfix) is a transcription factor related to mental and physical development. However, very few studies have reported the effects of Nfix on cartilage. This study aims to reveal the influence of Nfix on the proliferation and differentiation of chondrocytes, and to explore its potential action mechanism. We isolated primary chondrocytes from the costal cartilage of newborn C57BL/6 mice and with Nfix overexpression or silencing treatment. We used Alcian blue staining and found that Nfix overexpression significantly promoted ECM synthesis in chondrocytes while silencing inhibited ECM synthesis. Using RNA-seq technology to study the expression pattern of Nfix in primary chondrocytes. We found that Nfix overexpression significantly up-regulated genes that are related to chondrocyte proliferation and extracellular matrix (ECM) synthesis and significantly down-regulated genes related to chondrocyte differentiation and ECM degradation. Nfix silencing, however, significantly up-regulated genes associated with cartilage catabolism and significantly down-regulated genes associated with cartilage growth promotion. Furthermore, Nfix exerted a positive regulatory effect on Sox9, and we propose that Nfix may promote chondrocyte proliferation and inhibit differentiation by stimulating Sox9 and its downstream genes. Our findings suggest that Nfix may be a potential target for the regulation of chondrocyte proliferation and differentiation.


Assuntos
Condrócitos , Fatores de Transcrição NFI , Animais , Camundongos , Cartilagem/metabolismo , Diferenciação Celular/genética , Proliferação de Células/genética , Condrócitos/metabolismo , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo
10.
Commun Biol ; 6(1): 640, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316562

RESUMO

Human genetics has validated de-repression of fetal gamma globin (HBG) in adult erythroblasts as a powerful therapeutic paradigm in diseases involving defective adult beta globin (HBB)1. To identify factors involved in the switch from HBG to HBB expression, we performed Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq)2 on sorted erythroid lineage cells derived from bone marrow (BM) or cord blood (CB), representing adult and fetal states, respectively. BM to CB cell ATAC-seq profile comparisons revealed genome-wide enrichment of NFI DNA binding motifs and increased NFIX promoter chromatin accessibility, suggesting that NFIX may repress HBG. NFIX knockdown in BM cells increased HBG mRNA and fetal hemoglobin (HbF) protein levels, coincident with increased chromatin accessibility and decreased DNA methylation at the HBG promoter. Conversely, overexpression of NFIX in CB cells reduced HbF levels. Identification and validation of NFIX as a new target for HbF activation has implications in the development of therapeutics for hemoglobinopathies.


Assuntos
Cromatina , Hemoglobina Fetal , Adulto , Humanos , Cromatina/genética , Hemoglobina Fetal/genética , Linhagem da Célula/genética , Bioensaio , Células da Medula Óssea , Fatores de Transcrição NFI/genética
11.
Int J Dev Neurosci ; 83(5): 479-485, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37336770

RESUMO

Marshall-Smith syndrome (MSS) and Malan syndrome (MS) are both allelic disorders caused by mutations in the NFIX gene. MS is characterized by overgrowth, intellectual disability, distinctive facial features, and accelerated skeletal maturation. On the other hand, clinical features of MSS consist of advanced bone age, dysmorphic features, intellectual disability, and failure to thrive at birth. In this study, we presented the clinical and molecular findings of two different patients with MS and MSS as a rare cause of intellectual disability and reported two novel variants in the NFIX gene. NFIX gene sequencing revealed a novel heterozygous c.1287delC (p.G430Vfs*34) mutation in patient 1 whose clinical diagnosis was compatible with Marshall-Smith syndrome, and in the second patient, physical features consistent with Malan syndrome, was detected a heterozygous one nucleotide duplication, c.303dupC (pCys102LeufsTer17).


Assuntos
Deficiência Intelectual , Recém-Nascido , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Fatores de Transcrição NFI/genética , Fenótipo , Mutação/genética
12.
J Pathol Clin Res ; 9(4): 261-272, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36947439

RESUMO

Prognostic tools are an essential component of the clinical management of patients with renal cell carcinoma (RCC). Although tumour stage and grade can provide important information, they fail to consider patient- and tumour-specific biology. In this study, we set out to find a novel molecular marker of RCC by using hepatocyte nuclear factor 4A (HNF4A), a transcription factor implicated in RCC progression and malignancy, as a blueprint. Through transcriptomic analyses, we show that the nuclear factor I A (NFIA)-driven transcription network is active in primary RCC and that higher levels of NFIA confer a survival benefit. We validate our findings using immunohistochemical staining and analysis of a 363-patient tissue microarray (TMA), showing for the first time that NFIA can independently predict poor cancer-specific survival in clear cell RCC (ccRCC) patients (hazard ratio = 0.46, 95% CI = 0.24-0.85, p value = 0.014). Furthermore, we confirm the association of HNF4A with higher grades and stages in ccRCC in our TMA cohort. We present novel data that show HNF4A protein expression does not confer favourable prognosis in papillary RCC, confirming our survival analysis with publicly available HNF4A RNA expression data. Further work is required to elucidate the functional role of NFIA in RCC as well as the testing of these markers on patient material from diverse multi-centre cohorts, to establish their value for the prognostication of RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Prognóstico , Análise de Sobrevida , Núcleo Celular/patologia , Fatores de Transcrição NFI/genética
13.
Int J Obes (Lond) ; 47(6): 434-442, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36806387

RESUMO

BACKGROUND: Genome-wide association studies have shown that body mass index (BMI), an estimate of obesity, is highly polygenic. Individual variants typically have small effect sizes, making it challenging to identify unique loci in under-represented ethnic groups which lack statistical power due to their small sample size. Yet obesity is a major health disparity and is particularly prevalent in southwestern American Indians. Here, we identify and characterize a new locus for BMI that was detected by analyzing moderate associations with BMI obtained in a population-based sample of southwestern American Indians together with the well-powered GIANT dataset. METHODS: Genotypes for 10.5 million variants were tested for association with BMI in 5870 American Indians and 2600 variants that showed an association P < 10-3 in the American Indian sample were combined in a meta-analysis with the BMI data reported in GIANT (N = 240,608). The newly identified gene, NFIA-AS2 was functionally characterized, and the impact of its lead associated variant rs1777538 was studied both in-silico and in-vitro. RESULTS: Rs1777538 (T/C; C allele frequency = 0.16 in American Indians and 0.04 in GIANT, meta-analysis P = 5.0 × 10-7) exhibited a large effect in American Indians (1 kg/m2 decrease in BMI per copy of C allele). NFIA-AS2 was found to be a nuclear localized long non-coding RNA expressed in tissues pertinent to human obesity. Analysis of this variant in human brown preadipocytes showed that NFIA-AS2 transcripts carrying the C allele had increased RNA degradation compared to the T allele transcripts (half-lives = 9 h, 13 h respectively). During brown adipogenesis, NFIA-AS2 featured a stage-specific regulation of nearby gene expression where rs1777538 demonstrated an allelic difference in regulation in the mature adipocytes (the strongest difference was observed for L1TD1, P = 0.007). CONCLUSION: Our findings support a role for NFIA-AS2 in regulating pathways that impact BMI.


Assuntos
Índice de Massa Corporal , Índios Norte-Americanos , Obesidade , RNA Longo não Codificante , Humanos , Indígena Americano ou Nativo do Alasca , Estudo de Associação Genômica Ampla , Índios Norte-Americanos/genética , Fatores de Transcrição NFI/genética , Obesidade/genética , Polimorfismo de Nucleotídeo Único/genética , RNA Longo não Codificante/genética , Sudoeste dos Estados Unidos
14.
Am J Med Genet A ; 191(5): 1395-1400, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36756855

RESUMO

NFIB belongs to the nuclear factor I (NFI) family of transcription factors that, by activating or repressing gene expression during embryogenesis, has a relevant role in the development of several organs including the brain. Heterozygous pathogenic variants of NFIB have recently been associated with developmental delay and mild-to-moderate intellectual disability, macrocephaly, nonspecific facial dysmorphisms, and corpus callosum dysgenesis. We identified a heterozygous missense variant in the NFIB gene in a 15-year-old boy with neurodevelopmental disorder and brain malformations, who inherited the variant from his substantially healthy mother presenting only minor physical and neuroanatomical defects.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Masculino , Criança , Humanos , Adolescente , Deficiências do Desenvolvimento/genética , Fatores de Transcrição NFI/genética , Encéfalo/anormalidades , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Neuroimagem
15.
J Chemother ; 35(2): 117-130, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35380509

RESUMO

Cisplatin (DDP) is first-line management for ovarian cancer (OC). Previous data have suggested that circular RNA_0007841 (circ_0007841) regulates OC progression; however, there is no data on its role in the sensitivity of OC cells to DDP. RNA expression of circ_0007841, microRNA-532-5p (miR-532-5p) and nuclear factor I B (NFIB) was detected by quantitative real-time polymerase chain reaction in OC patient samples and OC cell lines. Protein expression was checked by Western blotting analysis. Cell viability, proliferation, cell apoptotic rate, migration and invasion were investigated by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-diphenytetrazoliumromide, 5-Ethynyl-29-deoxyuridine, flow cytometry analysis, scratch test and transwell assays, respectively. The interactions among circ_0007841, miR-532-5p and NFIB were identified by a dual-luciferase reporter assay. Xenograft mouse model assay was performed to determine the effect of circ_0007841 on DDP sensitivity in vivo. Circ_0007841 and NFIB expression were upregulated, whereas miR-532-5p was downregulated in DDP-resistant OC tissues and cells compared with controls. Circ_0007841 silencing improved DDP sensitivity, inhibited cell proliferation, invasion and migration, but induced cell apoptosis in DDP-resistant OC cells. Circ_0007841 acted as a miR-532-5p sponge and regulated DDP resistance and OC cell malignancy through miR-532-5p in DDP-resistant OC cells. Besides, the overexpression of NFIB, a target of miR-532-5p, remitted miR-532-5p-mediated effects in DDP-resistant OC cells. Circ_0007841 depletion conferred DDP sensitivity to DDP-resistant OC cells in vivo. Further, circ_0007841 was secreted from DDP-resistant OC cells through being packaged into exosomes. Circ_0007841 conferred DDP resistance to DDP-resistant OC cells through the miR-532-5p/NFIB axis, suggesting the potential of circ_0007841 as a therapeutic target for OC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Fatores de Transcrição NFI/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Proliferação de Células , Modelos Animais de Doenças , MicroRNAs/genética , Resistencia a Medicamentos Antineoplásicos/genética
16.
Hum Genet ; 142(1): 21-32, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35997807

RESUMO

Lambdoid craniosynostosis (CS) is a congenital anomaly resulting from premature fusion of the cranial suture between the parietal and occipital bones. Predominantly sporadic, it is the rarest form of CS and its genetic etiology is largely unexplored. Exome sequencing of 25 kindreds, including 18 parent-offspring trios with sporadic lambdoid CS, revealed a marked excess of damaging (predominantly missense) de novo mutations that account for ~ 40% of sporadic cases. These mutations clustered in the BMP signaling cascade (P = 1.6 × 10-7), including mutations in genes encoding BMP receptors (ACVRL1 and ACVR2A), transcription factors (SOX11, FOXO1) and a transcriptional co-repressor (IFRD1), none of which have been implicated in other forms of CS. These missense mutations are at residues critical for substrate or target sequence recognition and many are inferred to cause genetic gain-of-function. Additionally, mutations in transcription factor NFIX were implicated in syndromic craniosynostosis affecting diverse sutures. Single cell RNA sequencing analysis of the mouse lambdoid suture identified enrichment of mutations in osteoblast precursors (P = 1.6 × 10-6), implicating perturbations in the balance between proliferation and differentiation of osteoprogenitor cells in lambdoid CS. The results contribute to the growing knowledge of the genetics of CS, have implications for genetic counseling, and further elucidate the molecular etiology of premature suture fusion.


Assuntos
Craniossinostoses , Camundongos , Animais , Craniossinostoses/genética , Craniossinostoses/metabolismo , Mutação , Transdução de Sinais/genética , Fatores de Transcrição/genética , Diferenciação Celular , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo
17.
Blood Adv ; 7(17): 4677-4689, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36478187

RESUMO

The transcription factor (TF) nuclear factor I-X (NFIX) is a positive regulator of hematopoietic stem and progenitor cell (HSPC) transplantation. Nfix-deficient HSPCs exhibit a severe loss of repopulating activity, increased apoptosis, and a loss of colony-forming potential. However, the underlying mechanism remains elusive. Here, we performed cellular indexing of transcriptomes and epitopes by high-throughput sequencing (CITE-seq) on Nfix-deficient HSPCs and observed a loss of long-term hematopoietic stem cells and an accumulation of megakaryocyte and myelo-erythroid progenitors. The genome-wide binding profile of NFIX in primitive murine hematopoietic cells revealed its colocalization with other hematopoietic TFs, such as PU.1. We confirmed the physical interaction between NFIX and PU.1 and demonstrated that the 2 TFs co-occupy super-enhancers and regulate genes implicated in cellular respiration and hematopoietic differentiation. In addition, we provide evidence suggesting that the absence of NFIX negatively affects PU.1 binding at some genomic loci. Our data support a model in which NFIX collaborates with PU.1 at super-enhancers to promote the differentiation and homeostatic balance of hematopoietic progenitors.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Fatores de Transcrição NFI , Camundongos , Animais , Fatores de Transcrição NFI/genética , Fatores de Transcrição NFI/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Diferenciação Celular/genética
18.
Am J Med Genet A ; 191(2): 540-545, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321570

RESUMO

Nuclear Factor I B (NFIB) haploinsufficiency has recently been identified as a cause of intellectual disability (ID) and macrocephaly. Here we report on two new individuals carrying a microdeletion in the chromosomal region 9p23-p22.3 containing NFIB. The first is a 7-year 9-month old boy with developmental delays, ID, definite facial anomalies, and brain and spinal cord magnetic resonance imaging findings including periventricular nodular heterotopia, hypoplasia of the corpus callosum, arachnoid cyst in the left middle cranial fossa, syringomyelia in the thoracic spinal cord and distal tract of the conus medullaris, and a stretched appearance of the filum terminale. The second is a 32-year-old lady (the proband' mother) with dysmorphic features, and a history of learning disability, hypothyroidism, poor growth, left inguinal hernia, and panic attacks. Her brain magnetic resonance imaging findings include a dysmorphic corpus callosum, and a small cyst in the left choroidal fissure that marks the hippocampal head. Array-based comparative genomic hybridization identified, in both, a 232 Kb interstitial deletion at 9p23p22.3 including several exons of NFIB and no other known genes. Our two individuals add to the knowledge of this rare disorder through the addition of new brain and spinal cord MRI findings and dysmorphic features. We propose that NFIB haploinsufficiency causes a clinically recognizable malformation-ID syndrome.


Assuntos
Anormalidades Múltiplas , Deficiência Intelectual , Feminino , Humanos , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Encéfalo/patologia , Deleção Cromossômica , Hibridização Genômica Comparativa , Corpo Caloso/patologia , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fatores de Transcrição NFI/genética , Fenótipo , Masculino , Criança , Adulto
19.
Cancer Sci ; 114(3): 793-805, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36369883

RESUMO

Sorafenib is one a first-line therapeutic drugs for advanced hepatocellular carcinoma (HCC). However, only 30% of patients benefit from sorafenib due to drug resistance. We and other groups have revealed that nuclear factor I B (NFIB) regulates liver regeneration and carcinogenesis, but its role in drug resistance is poorly known. We found that NFIB was more upregulated in sorafenib-resistant SMMC-7721 cells compared to parental cells. NFIB knockdown not only sensitized drug-resistant cells to sorafenib but also inhibited the proliferation and invasion of these cells. Meanwhile, NFIB promoted the proliferation and invasion of HCC cells in vitro and facilitated tumor growth and metastasis in vivo. Knocking down NFIB synergetically inhibited tumor growth with sorafenib. Mechanically, gene expression profiling and subsequent verification experiments proved that NFIB could bind with the promoter region of a complex I inhibitor NDUFA4L2 and promote its transcription. Transcriptional upregulation of NDUFA4L2 by NFIB could thus inhibit the sorafenib-induced reactive oxygen species accumulation. Finally, we found that NFIB was highly expressed in HCC tissues, and high NFIB expression level was associated with macrovascular invasion, advanced tumor stage, and poor prognosis of HCC patients (n = 156). In summary, we demonstrated that NFIB could transcriptionally upregulate NDUFA4L2 to enhance both intrinsic and acquired sorafenib resistance of HCC cells by reducing reactive oxygen species induction.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Fatores de Transcrição NFI/genética , Espécies Reativas de Oxigênio/metabolismo , Sorafenibe/farmacologia
20.
Genes (Basel) ; 13(12)2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36553517

RESUMO

The NFIA (nuclear factor I/A) gene encodes for a transcription factor belonging to the nuclear factor I family and has key roles in various embryonic differentiation pathways. In humans, NFIA is the major contributor to the phenotypic traits of "Chromosome 1p32p31 deletion syndrome". We report on two new cases with deletions involving NFIA without any other pathogenic protein-coding gene alterations. A cohort of 24 patients with NFIA haploinsufficiency as the sole anomaly was selected by reviewing the literature and public databases in order to analyze all clinical features reported and their relative frequencies. This process was useful because it provided an overall picture of the phenotypic outcome of NFIA haploinsufficiency and helped to define a cluster of phenotypic traits that can facilitate clinicians in identifying affected patients. NFIA haploinsufficiency can be suspected by a careful observation of the dysmorphisms (macrocephaly, craniofacial, and first-finger anomalies), and this potential diagnosis is strengthened by the presence of intellectual and developmental disabilities or other neurodevelopmental disorders. Further clues of NFIA haploinsufficiency can be provided by instrumental tests such as MRI and kidney urinary tract ultrasound and confirmed by genetic testing.


Assuntos
Megalencefalia , Sistema Urinário , Humanos , Fatores de Transcrição NFI/genética , Haploinsuficiência/genética , Megalencefalia/genética , Deleção Cromossômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...